Categories: Uncategorized

Understanding the Difference Between Axial Flow Impellers and Radial Flow Impellers

Industrial impellers, also know as agitator blades, can be split into two main categories based on the type of fluid motion they generate during operation. The two categories are axial flow and radial flow. To dive deeper into selecting the right impeller for your specific needs, check out our comprehensive guide on impeller selection.

Axial Flow Motion
In fluid motion, axial flow is the movement of the fluid in an up and down, cyclic pattern. The rotation of axial flow impellers makes the fluid move downwards and later upwards before being pushed down again to repeat the cycle.

Radial Flow Motion
Radial flow impellers are designed to move fluid sideways during rotation. The displaced fluid then either moves upwards or downwards and then back to the center towards the impellers only to be pushed outwards again to repeat the cycle.

Different Designs of Axial Flow Impellers
1. Pitched axial flow blades: These are impellers with blades that are pitched at an angle, typically 45 degrees. These impellers produce a good balance between shear and fluid flow when rotated, making them suitable for a wide variety of applications. Examples include blending and solid suspension.

2. Propeller blades: These types of blades also generate axial fluid flow. However, they generate less shear stress compared to pitched blades. Propellers are generally used for mixing applications due to their efficiency. They are also more commonly found in portable mixers.

3. Hydrofoils: These axial flow impellers generate the least amount of shear stress in fluids. Their design is great for producing high flow. They can be used for general blending applications but they are also used as an alternative for large scale mixing applications because large propeller blades are expensive.

Different Designs of Radial Flow Impellers
1. Radial flow impellers: These impellers have blades that are not pitched and they are usually have between 4 and 6 blades. Designs with a higher number of blades are also used but they serve niche purposes.

Because of their sideways fluid motion, radial flow impellers produce a high degree of shear stress. The fluid flow level produced is low. These impellers are therefore primarily used for dispersion applications.

2. Dispersion blades: These are speciality blades that almost solely generate a very high degree of shear stress in fluids due to their mostly flat/disc-like designs, which facilitate radial flow. The teeth at the end of the discs can rapidly breakdown agglomerations. As the name suggests, they are highly efficient at the task of dispersion and are being increasingly used for this.

Contact us today to discuss your specific needs and take your mixing efficiency to the next level!

Recent Posts

  • Blog

Key Considerations When Selecting the Right Mixer for Chemical Processing

Selecting the right equipment is critical in the chemical processing industry. The selection of appropriate…

1 week ago
  • Blog

Understanding the Mechanics of Industrial Centrifugal Pumps: A Deep Dive

Centrifugal pumps play a pivotal role in various applications across numerous industries. These dynamic machines…

1 month ago
  • Blog

Valve Maintenance 101: Best Practices for Longevity and Optimal Performance

Industrial valves are indispensable in controlling the flow and pressure within a system, but their…

1 month ago
  • Blog

Innovations in Industrial Valve Technology: Enhancing Performance and Reliability

Technological advancements rapidly evolving in industrial maintenance, including the way in which industrial valves are…

2 months ago
  • Blog

Navigating the Complexities of Storage Tank Regulations: A Comprehensive Overview

Adhering to regulations is more than just compliance; it's a vital component of operational safety…

2 months ago
  • Blog

How Tailored Storage Tanks Maximize Efficiency

Efficiency and customization are the bedrock of industrial success, so businesses seek ways to streamline…

2 months ago