Blog

3 Reasons To Choose Positive Displacement Pumps

It can be very difficult to choose between a positive displacement pumps and a centrifugal one. The differences between these pumps are often not that clear. In this article, we take a closer look at the way these pumps operate, the unique positive displacement pump characteristics and when to use them– making the choice ever so much easier.

How does a positive displacement pump work?

A positive displacement pump moves a trapped liquid from the inlet to the discharge pipe. By creating flow, this produces pressure. Because they can transfer highly viscous fluids at high pressure and low flow rates, the efficiency of PD pumps are not compromised or affected by this pressure.

They’re superior to centrifugal pumps because they can run at any point on their curve (handling difficult conditions where centrifugal water pumps could fail). In addition, by operating at lower speeds than centrifugal pumps, these pumps have less shear, allowing gentle operation for shear-sensitive fluids.

Why choose positive displacement pumps?


1. Efficiency at increased viscosity

Centrifugal pumps struggle to pump viscous liquids. With positive displacement pumps, their efficiency increases with increasing viscosity. Simply put, the thicker the liquid, the less slip there is in the pump (higher viscosity requires more energy to move). The performance of the positive displacement pump actually improves under these conditions, because the liquid doesn’t easily slip through the gaps and clearances near the rotors.

2. Low flow requirements

When lower flow is required, a centrifugal pump can run off its BEP, which increases energy usage, negatively impacts performance, and may even damage the pump.

With a positive displacement pump, you can change the speed to regulate flow. This means you can provide a constant flow of fluid at a given speed. This makes the positive displacement chemical pump the better choice for pressure and flow when operating a pump off its BEP.

3. Metering applications

These pumps are often used for metering because of their ability to offer constant flow. PD pumps are thus well suited for metering applications where precise quantities of fluids and measured flow is needed for specific process requirements. The types of pumps used for metering include bellows, gear, peristaltic, diaphragm, and piston.

Positive displacement pumps are better than centrifugal pumps for some applications, but it’s not always a clear choice. If you’re unsure, give us a call on 1-800-367-4180 (toll-free). We are your chemical pumps supplier in Canada and we’re here to help you choose, install, maintain, and monitor a variety of equipment. And to answer questions about things you’ve previously tried gone wrong.

Recent Posts

  • Blog

Key Considerations When Selecting the Right Mixer for Chemical Processing

Selecting the right equipment is critical in the chemical processing industry. The selection of appropriate…

2 weeks ago
  • Blog

Understanding the Mechanics of Industrial Centrifugal Pumps: A Deep Dive

Centrifugal pumps play a pivotal role in various applications across numerous industries. These dynamic machines…

1 month ago
  • Blog

Valve Maintenance 101: Best Practices for Longevity and Optimal Performance

Industrial valves are indispensable in controlling the flow and pressure within a system, but their…

1 month ago
  • Blog

Innovations in Industrial Valve Technology: Enhancing Performance and Reliability

Technological advancements rapidly evolving in industrial maintenance, including the way in which industrial valves are…

2 months ago
  • Blog

Navigating the Complexities of Storage Tank Regulations: A Comprehensive Overview

Adhering to regulations is more than just compliance; it's a vital component of operational safety…

2 months ago
  • Blog

How Tailored Storage Tanks Maximize Efficiency

Efficiency and customization are the bedrock of industrial success, so businesses seek ways to streamline…

2 months ago